Set or modify and output the perfect scores for different verificaiton metrics
Source:R/perfect_score.R
perfect_score.Rd
The function returns a named vector giving the perfect score for all verification scores computed by harpPoint that give a single value. These perfect values can be modified by specifying them in named arguments and perfect scores for new scores can be set in the same way.
Examples
perfect_score()
#> bias rmse mae
#> 0e+00 0e+00 0e+00
#> stde threat_score hit_rate
#> 0e+00 1e+00 1e+00
#> miss_rate false_alarm_rate false_alarm_ratio
#> 0e+00 0e+00 0e+00
#> heidke_skill_score pierce_skill_score kuiper_skill_score
#> 1e+00 1e+00 1e+00
#> percent_correct frequency_bias equitable_threat_score
#> 1e+00 1e+00 1e+00
#> odds_ratio log_odds_ratio odds_ratio_skill_score
#> 1e+06 1e+06 1e+00
#> extreme_dependency_score symmetric_eds extreme_dependency_index
#> 1e+00 1e+00 1e+00
#> symmetric_edi mean_bias spread
#> 1e+00 0e+00 1e+06
#> spread_skill_ratio crps crps_potential
#> 1e+00 0e+00 0e+00
#> crps_reliability fair_brier_score fair_crps
#> 0e+00 0e+00 0e+00
#> brier_score brier_skill_score brier_score_reliability
#> 0e+00 1e+00 0e+00
#> brier_score_resolution roc_area
#> 1e+00 1e+00
perfect_score(bss = 1)
#> bias rmse mae
#> 0e+00 0e+00 0e+00
#> stde threat_score hit_rate
#> 0e+00 1e+00 1e+00
#> miss_rate false_alarm_rate false_alarm_ratio
#> 0e+00 0e+00 0e+00
#> heidke_skill_score pierce_skill_score kuiper_skill_score
#> 1e+00 1e+00 1e+00
#> percent_correct frequency_bias equitable_threat_score
#> 1e+00 1e+00 1e+00
#> odds_ratio log_odds_ratio odds_ratio_skill_score
#> 1e+06 1e+06 1e+00
#> extreme_dependency_score symmetric_eds extreme_dependency_index
#> 1e+00 1e+00 1e+00
#> symmetric_edi mean_bias spread
#> 1e+00 0e+00 1e+06
#> spread_skill_ratio crps crps_potential
#> 1e+00 0e+00 0e+00
#> crps_reliability fair_brier_score fair_crps
#> 0e+00 0e+00 0e+00
#> brier_score brier_skill_score brier_score_reliability
#> 0e+00 1e+00 0e+00
#> brier_score_resolution roc_area bss
#> 1e+00 1e+00 1e+00
perfect_score(bias = -1)
#> bias rmse mae
#> -1e+00 0e+00 0e+00
#> stde threat_score hit_rate
#> 0e+00 1e+00 1e+00
#> miss_rate false_alarm_rate false_alarm_ratio
#> 0e+00 0e+00 0e+00
#> heidke_skill_score pierce_skill_score kuiper_skill_score
#> 1e+00 1e+00 1e+00
#> percent_correct frequency_bias equitable_threat_score
#> 1e+00 1e+00 1e+00
#> odds_ratio log_odds_ratio odds_ratio_skill_score
#> 1e+06 1e+06 1e+00
#> extreme_dependency_score symmetric_eds extreme_dependency_index
#> 1e+00 1e+00 1e+00
#> symmetric_edi mean_bias spread
#> 1e+00 0e+00 1e+06
#> spread_skill_ratio crps crps_potential
#> 1e+00 0e+00 0e+00
#> crps_reliability fair_brier_score fair_crps
#> 0e+00 0e+00 0e+00
#> brier_score brier_skill_score brier_score_reliability
#> 0e+00 1e+00 0e+00
#> brier_score_resolution roc_area
#> 1e+00 1e+00